134. Stereochemistry of the Diels-Alder Reaction with Ethylenic Sulphoxides. Part VII. ${ }^{1}$ Proton Magnetic Resonance Spectra of Bicyclic Sulphides, Sulphoxides, and Sulphones.

By H. Hogeveen, G. Maccagnani, F. Montanari, and F. Taddei.

Proton magnetic resonance spectra of thio-, sulphinyl-, and sulphonyl-norbornene- and -norbornane-carboxylic acids have been measured in $\mathrm{NaOD}-\mathrm{D}_{2} \mathrm{O}$ solution; chemical shifts and coupling constants have been determined. The anisotropic effect of the double bond on protons 1-4, and of the phenyl ring on proton 4 has been evaluated.

Proton magnetic resonance spectroscopy has been applied successfully to configurational problems in bicyclic systems; ${ }^{2-4}$ for instance, we ${ }^{5}$ used it when assigning the configuration at the sulphur atom in norbornene and norbornane sulphoxides. Details are now reported for carboxy-sulphides, -sulphoxides, and -sulphones in these series. The compounds, all of known configuration, were prepared by Diels-Alder reaction, between cyclopentadiene and β-phenylsulphonyl- and β-phenylsulphinyl-acrylic acids, as previously described. ${ }^{5-7}$ Spectra have been recorded for 0.5 N -solutions of sodium deuteroxide in deuterium oxide.

[^0]Table 1.
Proton chemical shifts * in norbornene derivatives.

	$\gamma(1)$	$\gamma(2-e n)$	$\gamma(2-e x)$	$\gamma(3-e n)$	$\gamma(3-e x)$	$\gamma(4)$	$\gamma(5) \dagger$	$\gamma(6) \dagger$	$\gamma(7 \alpha)$	$\gamma(7 \beta)$	$\gamma(\mathrm{Ph})$
I	$-106 \cdot 8$		$-121 \cdot 8$		-161.9	-80.0	-275.3	$-296 \cdot 8$	0 (8.69)	${ }_{0}^{0}$	$-368 \cdot 4$
	(6.80)		(6.53)		(5.82)	(7-27)	(3.81)	(3-43)	(8.69)	(8.69)	(2.16)
II	-104.6		$-110 \cdot 2$		-149.3	-84.0	$-275 \cdot 8$	$-295 \cdot 0$			-337.8
	(6.84)		(6.74)		(6.04)	(7.20)	(3.80)	(3.46)	(8.69)	(8.69)	(2.70)
III	-112.3		-108.7		-154.3	-112.3	-285.8	-294.5	$-19 \cdot 2$	$-19 \cdot 2$	$-360 \cdot 0$
	(6.70)		(6.76)		(5.96)	(6.70)	(3.62)	(3-47)	(8.35)	(8.35)	(2.31)
IV	-118.7		-112.6		$-127 \cdot 8$	-44.4	-273.0	-283.6	0	0	-359.6
	(6.59)		(6.69)		(6.43)	(7.90)	(3.85)	(3.66)	(8.69)	(8.69)	(2-32)
V	$-111 \cdot 6$		-79.1	$-111 \cdot 6$		-106.3	$-271 \cdot 1$	$-285 \cdot 4$	-17.2	$-32 \cdot 4$	-358.7
	(6.71)		(7.29)	(6.71)		(6.81)	(3.88)	(3.63)	(8-39)	(8-12)	(2.33)
VI	$-105 \cdot 3$		-105.3	$-100 \cdot 0$		$-105 \cdot 3$	$-275 \cdot 2$	$-279 \cdot 4$	-9.1	-26.2	-359.3
	(6.82)		(6.82)	(6.92)		(6.82)	(3.81)	(3.74)	(8.53)	(8.23)	(2.32)
VII	-108.8		-108.8	-123.5		-108.8	$-276 \cdot 1$	$-276 \cdot 1$	$-10 \cdot 6$	-34.4	$-365 \cdot 5$
	(6.76)		(6.76)	(6.50)		(6.76)	(3.80)	(3.80)	(8.50)	(8.08)	(2.21)
VIII	-108.5		-121.5	-78.2		-78.2	$-274 \cdot 0$	$-274 \cdot 0$	-9.5	$-24 \cdot 2$	$-336 \cdot 1$
	(6.77)		(6-54)	(7-30)		(7-30)	(3.83)	(3.83)	(8.52)	(8-26)	(2.73)
IX	-92.7	$-64 \cdot 9$			-156.8	$-99 \cdot 7$	$-269 \cdot 2$	$-289 \cdot 2$	-18.2	-18.2	-339.6
	(7.05)	(7.54)			(5.91)	(6.92)	(3.92)	(3.56)	(8-37)	(8-37)	(2.67)
X	-103.6	$-70 \cdot 4$			-168.0	-103.6	$-274 \cdot 2$	-292.8	$-15 \cdot 7$	-15.7	$-367 \cdot 1$
	(6.85)	(7.44)			(5.71)	(6.85)	(3.83)	(3.50)	(8.41)	(8.41)	(2-18)
XI	-96.7	-76.3		$-124 \cdot 4$		-96.7	-258.0	-284.2	-5.7	-65.1	$-367 \cdot 7$
	(6.98)	(7-34)		(6.49)		(6.98)	(4-12)	(3.65)	(8.59)	(7-54)	(2-17)
XII	-106.8					$-84 \cdot 2$	$-279 \cdot 1$	-298.6	0	0	$-364 \cdot 2$
	(6.80)					(7.20)	(3.74)	(3.40)	(8.69)	(8.69)	(2.23)
XIII	$-104 \cdot 9$	$-70 \cdot 4$				$-100 \cdot 2$	-279.7	-297.1	-16.2	-16.2	$-365 \cdot 2$
	(6.83)	(7-44)				(6.91)	(3.73)	(3.42)	(8.40)	(8.40)	(2.22)
XIV	$\begin{aligned} & -109 \cdot 8 \\ & (6 \cdot 74) \end{aligned}$		$\underset{(6 \cdot 74)}{-109 \cdot 8}$			$\begin{gathered} -105 \cdot 9 \\ (6.81) \end{gathered}$	$\begin{gathered} -\mathbf{2 7 6} 6 \\ (\mathbf{3} \cdot 79) \end{gathered}$	$\begin{aligned} & -276 \cdot 6 \\ & (3 \cdot 79) \end{aligned}$	$\begin{array}{r} -10.6 \\ (8.50) \end{array}$	$\begin{aligned} & (35.0) \\ & (8.07) \end{aligned}$	$\begin{gathered} -364 \cdot 0 \\ (2 \cdot 24) \end{gathered}$

* Values in parentheses are in τ units. For (Me$)_{3} \mathrm{C}-\mathrm{OH}, \tau=8.69$ (Green, McCleverty, Pratt, and Wilkinson, $J ., 1961,4854)$. Similarly in Table 2. \dagger The position of H-5 and H-6 may be reversed.

(I)

(II)

(III)

(IV)

(V)

(VI)

(VII)

(VIII)

(IX)
(X) $\mathrm{SO}_{2} \cdot \mathrm{Ph}$
(XI)
between the peaks of the 7α - and 7β-proton depends on the substituents in positions 2 and 3 : it is smallest when the substituents are in the endo- and largest when they are in the exoposition.

The chemical shifts of protons 2,3 , and 4 are strongly affected by the type and position of the substituents. Therefore they can be used to study the configuration of the bicyclic compounds. In the spectrum of the cis-endo-sulphone (I) (Fig. 1) the multiplets of protons 2 and 3, at -121.8 and $-161.9 \mathrm{c} . / \mathrm{sec}$., respectively, are of AB type, with additional splitting due to protons 1 and 4. This assignment was confirmed by exchange of proton 3 with deuterium.

Fig. 1.
Fig. 2.
Proton magnetic resonance spectra of compounds designated.
Table 2.
Proton chemical shifts in norbornane derivatives.

The multiplet at $-161.9 \mathrm{c} . / \mathrm{sec}$. disappears, while that at $-121.8 \mathrm{c} . / \mathrm{sec}$. changes to a slightly broader line. The deuteration at position $\mathbf{3}$ is accompanied by the slower inversion endo \rightarrow exo of the phenylsulphonyl group ($k_{\mathrm{H}-\mathrm{D}} / k_{\text {inr. }}=15$), ${ }^{7}$ and thus the peaks corresponding to protons 2 and 3 in the trans-exo-sulphone (VII) can be identified. The peak at $-121.8 \mathrm{c} . / \mathrm{sec}$. disappears also with the 2,3 -dideuterated derivative ${ }^{7}$ (XII). The positions of the other peaks remain almost unchanged. The line of proton 4 in sulphone (I), at $-80.0 \mathrm{c} . / \mathrm{sec}$., is rather broad on account of coupling with protons 3,5 , and 7.

With the cis-endo-sulphide (II) the peaks of protons 2 and 3 are shifted to higher field (-110.2 and -149.3 c ./sec., respectively), compared with the corresponding compound (I), while that for proton 4 lies at $-84.0 \mathrm{c} . / \mathrm{sec}$. The distance between the peaks of protons 2 and 3 changes from $\sim 40 \mathrm{c}$./sec. for compounds (I) and (II) to $\mathbf{4 5 . 6}$ and 15.2 c ./sec. for compounds (III) and (IV), respectively. For the sulphoxide (III) the 4 -proton signal lies at -112.3 c ./sec., together with that of proton 1, while for the sulphoxide (IV) it is shifted to much higher magnetic field ($-41.4 \mathrm{c} . / \mathrm{sec}$.). This difference is caused by the ring current of the phenyl group in compound (IV). In fact, the most probable conformation of sulphoxide [anti, (IV)] is one where the 4 -proton lies above the phenyl ring, as previously ${ }^{5}$ discussed. In the saturated sulphoxide [anti, (XVII)] the same situation occurs. The exact position of the peak cannot be determined, for it is masked by those of protons 5-7. Intensity measurements confirm, however, the presence of the 4 -proton line in the multiplet, and its chemical shift was estimated to be about $-20 \mathrm{c} . / \mathrm{sec}$. The peak due to the 4 -proton in the $s y n$-isomer (XVI) lies at $-84.7 \mathrm{c} . / \mathrm{sec}$. Therefore, the saturated sulphoxides [syn, (XVI); anti, (XVII)] show the same relative spectral behaviour as the unsaturated sulphoxides (III) and (IV).

Discussion

Karplus ${ }^{8}$ has correlated the magnitude of coupling constants between protons on adjacent carbon atoms with the dihedral angles between the carbon-hydrogen bonds. For all the cis-endo-compounds described here the values of the coupling constants $J(1,2)$, $J(3,4), J(4,5)$, and $J(1,6)$ lie between $2 \cdot 3$ and $3 \cdot 4 \mathrm{c} . / \mathrm{sec}$. For the trans-compounds, $J(4,5)$ and $J(1,6)$ still lie in the interval $2 \cdot 1-3 \cdot 6 \mathrm{c} . / \mathrm{sec}$., but $J(1,2-e n)$ and $J(3-e n, 4)$ are lower than $1 \mathrm{c} . / \mathrm{sec}$. (Table 3). J values between 2.1 and $3.6 \mathrm{c} . / \mathrm{sec}$. correspond ${ }^{8}$ to dihedral angles of $50-60^{\circ}$, and those lower than $1 \mathrm{c} . / \mathrm{sec}$. to dihedral angles of $\sim 90^{\circ}$. This is in qualitative agreement with the dihedral angles obtained from molecular models on the basis of the endo,exo-configurations previously assigned. ${ }^{1,5,6}$

Table 3.
Proton coupling constants in norbornene derivatives.

	$J(1,2)$	$J(1,6)$	$J(2,3)$	$J(3,4)$	$J(4,5)$	$J(5,6)$	$J(7 \alpha, 7 \beta)$
I	$2 \cdot 3$	$2 \cdot 9$	$10 \cdot 1$	$2 \cdot 8$	$2 \cdot 9$	$5 \cdot 1$	
II	$2 \cdot 7$	$2 \cdot 3$	$9 \cdot 6$	$3 \cdot 4$	$2 \cdot 3$	$4 \cdot 5$	~ 9
III	$3 \cdot 4$	$2 \cdot 8$	$7 \cdot 8$	$3 \cdot 4$	$2 \cdot 8$	$5 \cdot 6$	$9 \cdot 4$
IV	$2 \cdot 5$	$2 \cdot 6$	$6 \cdot 6$	$2 \cdot 5$	$2 \cdot 6$	6.5	
V	$2 \cdot 5$	$2 \cdot 9$	$3 \cdot 7$		$2 \cdot 6$	$6 \cdot 3$	$8 \cdot 9$
VI	$2 \cdot 1$	$2 \cdot 1$			$2 \cdot 1$	$4 \cdot 6$	$8 \cdot 9$
VII			$4 \cdot 9$	<1			$9 \cdot 2$
VIII	$2 \cdot 6$		$3 \cdot 4$	<1			$8 \cdot 3$
IX		$3 \cdot 2$	$2 \cdot 8$	$2 \cdot 8$	$3 \cdot 6$	$4 \cdot 3$	
X	<1	3•1	$5 \cdot 0$	$2 \cdot 6$	3•1	$5 \cdot 6$	
XI	<1	$3 \cdot 7$	$9 \cdot 4$	<1	3•1	$5 \cdot 7$	$8 \cdot 7$

For a series of 2 -endo-substituted hexachlorobicyclo[2,2,1]hept-5-enes Williamson ${ }^{9}$ found a linear correlation between $J(2-e x, 3-e x), J(2-e x, 3-e n)$, and $J(3-e x, 3-e n)$ and the electronegativity of the substituent (as defined by Cavanaugh and Dailey ${ }^{10}$). In our series a linear relation exists between $J(2$-ex,3-en) of trans-derivatives (VI)-(VIII) and the

[^1]electronegativities of $\mathrm{EtS}, \mathrm{Et} \cdot \mathrm{SO}$, and $\mathrm{Et} \cdot \mathrm{SO}_{2}$ groups ($\mathbf{2 \cdot 6 4}, \mathbf{2} \cdot 67$, and $2 \cdot 81$, respectively ${ }^{11}$), employed instead of those of $\mathrm{PhS}, \mathrm{Ph} \cdot \mathrm{SO}$, and $\mathrm{Ph} \cdot \mathrm{SO}_{2}$ which are not available. An analogous correlation with $J(2-e x, 3-e x)$ does not occur with the cis-derivatives (I)-(IV), probably owing to direct interactions through space between $\mathrm{CO}_{2}{ }^{-}$at position 2 and cis-substituents at position 3, which were previously ${ }^{1}$ invoked to explain the acidity measurements.

We may suppose that the variation in chemical shift of protons 1-4 due to hydrogenation is mainly caused by anisotropy of the double bond. These variations are shown in Table 4 and agree with values $(0.54-0.61)$ derived from Fraser's results. ${ }^{2}$

Table 4.

Variation of chemical shifts due to hydrogenation of the C:C bond.

$\Delta($ p.p.m. $)=[\gamma(\mathrm{CH} \cdot \mathrm{CH})-\gamma(\mathrm{C}: \mathrm{C})] / 56.4$ (c./sec. $)$.						
	H-1	H-2ex	H-2en	H-3ex	H-3.n	H-4
$(\mathrm{I}) \longrightarrow$ (XV)	+0.58	$+0.31$		$+0.65$		$+0.50$
(III) \longrightarrow (XVI)	+0.59	$+0.32$		$+0.36$		$+0.49$
$(\mathrm{IV}) \longrightarrow$ (XVII)	+0.69	$+0.16$		+0.42		$+0 \cdot 43$
$(\mathrm{XI}) \longrightarrow$ (XVIII)	+0.62		$-0 \cdot 17$		-0.12	$+0.62$

Hydrogenation of the double bond in the norbornene system shifts the lines due to protons 2 and 3 in endo- or exo-position to lower and higher magnetic field, respectively. ${ }^{2}$ Table 4 shows also that lines due to protons 1 and 4 are shifted to higher field by saturation of the double bond. However, while Δ (p.p.m.) of protons 2 and 3 varies appreciably with the nature of the substituent, the variations for the bridgehead protons l and 4 are much smaller ($0.58-0.69$ for $\mathrm{H}-1$ and $0.43-0.62$ for $\mathrm{H}-4$). The contribution made by the magnetic anisotropy of a C:C double bond to the chemical shift is given by the formula: ${ }^{12,13}$

$$
\delta=\frac{10^{24}}{3 N R^{3}}\left(1-3 \cos ^{2} \gamma\right) \Delta \chi
$$

where Δ_{χ} is the difference between the components of magnetic susceptibility perpendicular to the plane and parallel to the axis of the double bond, γ is the angle subtended at the normal to this plane by the line, of length R (in \AA), joining the proton to the centre of the double bond. The nearly constant shift Δ (p.p.m.) for protons 1 and 2 can be used to derive $\Delta \chi$: by assuming $R=2.8 \AA$ and $\gamma=85^{\circ}$ on the basis of molecular models, a value of about $23 \cdot 10^{-6} \mathrm{~cm} .^{3}$ mole ${ }^{-1}$ is obtained for $\Delta \%$. Now the formula can be applied to compute δ for the endo- and exo-protons 2 and 3 . This has been done by using the values $R_{e n}=2.7 \AA, R_{e x}=3.5 \AA, \gamma_{e n} \approx 80^{\circ}, \gamma_{e x} \approx 45^{\circ}$; the following results were obtained:

$$
\begin{aligned}
& \left.\mathrm{H}_{e n} \approx-0.32 \text { (exp. }-0.12 \text { to }-0.17\right) \\
& \left.\mathrm{H}_{e x} \approx 0.27 \text { (exp. } 0.16 \text { to } 0.65\right)
\end{aligned}
$$

Keeping in mind that (i) other contributions to the chemical shift exist beside magnetic anisotropy, (ii) the γ-values employed are rather subjective (that implies a large uncertainty of δ for $\gamma \approx 45^{\circ}$), we conclude that the agreement is reasonable.

All our compounds contain a phenyl group bonded to the bicyclic system through S, SO, or SO_{2}. It has been found ${ }^{\mathbf{1 4}}$ that in 1,2 -diphenylcyclopentane the phenyl ring gives a narrow peak or a broad multiplet, depending on the degree of free rotation. In our bicyclic systems both types of absorption signal occur, but it is probable that, besides

[^2]steric factors, the nature of the bonding group (S, SO, or SO_{2}) and the interactions between $\mathrm{Ph}, \mathrm{C}: \mathrm{C}$, and $\mathrm{CO}_{2}{ }^{-}$will affect the form of the resonance signal. Therefore, it is not possible to draw conclusions about the rotational freedom of the phenyl ring.

It is evident that a diamagnetic effect by the π-electron cloud of the phenyl ring operates on the protons which lie above the plane of the ring. The large shift ($-44 \cdot 4 \mathrm{c} . / \mathrm{sec}$.) to higher field of the 4 -proton line of the cis-anti-sulphoxide (IV) was previously ${ }^{5}$ related to this effect, while for the sulphoxides [cis-syn, (III); and trans, (V) and (VI)] the 4 -proton peaks are at $-112 \cdot 3,-106 \cdot 3$, and $-105 \cdot 3 \mathrm{c}$./sec., respectively.

Thus, as previously postulated, ${ }^{5}$ the anti-isomer (IV) easily reaches a conformation in which proton 4 lies above the plane of the phenyl ring. An analogous conformation is much less probable for the syn-isomer (III) and the trans-isomers (V) and (VI). For the cis-sulphone (I) and cis-sulphide (II) the 4-proton peak falls at -80.0 and $-84.0 \mathrm{c} . / \mathrm{sec}$., respectively; these values reflect a situation in which the phenyl group, in respect of proton 4, occupies a preferred position intermediate between the two extreme possibilities in the corresponding sulphoxides (III) and (IV). ${ }^{5}$ In addition, it may be supposed that at least in some of the cis- and trans-sulphoxides and -sulphones deshielding of proton 4 by the sulphinyl and sulphonyl group takes place. The contribution of the ring-current to the shift of the 4 -proton line of the anti-sulphoxide (IV) can be calculated by using Pople's free-electron model, as modified by Waugh and Fessenden: ${ }^{15}$

$$
\delta=\frac{n c^{2}}{24 \pi m c^{2} a} B_{0}(\rho, z)
$$

In their formula the chemical shift δ is proportional to $B_{0}(\rho, z)$, which has been tabulated ${ }^{15}$ as a function of the cylindrical co-ordinates ρ and z. For the smallest distance of proton 4 from the centre of the ring, two limiting conformations are considered: (i) maximum paramagnetic contribution of the phenyl ring (proton in the plane of the ring); (ii) maximum diamagnetic contribution of the ring (phenyl group rotated 90° from the former conformation). By assuming ρ and z to be 3.0 and 0 in case (i), and 1.0 and 1.7 in case (ii), δ is found to be -0.4 p.p.m. for case (i) and +1.6 p.p.m. for case (ii). This means that, even with completely free rotation of the phenyl group around the Ar-S bond, the diamagnetic is larger than the paramagnetic contribution. If we take as reference compounds the trans-sulphoxides (V) and (VI), where the ring effect on proton 4 may be assumed to be negligible, the experimental value of δ is $+1 \cdot 10$ p.p.m., in reasonable agreement with the computed values.

Further, the magnetic anisotropy of carboxyl, ${ }^{16}$ sulphinyl, ${ }^{13}$ and sulphonyl groups can affect the protons of the bicyclic system. This is shown by the chemical shifts of proton 7 (Tables 1 and 2), one of which (probably $7 \beta-\mathrm{H}$) is generally shifted to low field more than the other. The largest effect on $7 \beta-\mathrm{H}$ is caused by exo- $\mathrm{Ph}^{2} \cdot \mathrm{SO}_{2}$ in compounds (VII) and (XIV), but it increases also when both $\mathrm{Ph} \cdot \mathrm{SO}_{2}$ and $\mathrm{CO}_{2}{ }^{-}$are exo [compounds (XI) and (XVIII)]. When only the carboxyl group is exo [compounds (IX), (X), and (XIII)] both 7 -protons are equally affected.

The chemical shifts of the 7 -protons may give information about the syn,anti-configurations at the sulphur atom in the trans-sulphoxides (V) and (VI). For the sulphoxide of m . p. 193-194 7 -protons peaks are found at -17.2 and $-32.4 \mathrm{c} . / \mathrm{sec}$. (average $-24 \cdot 8 \mathrm{c} . / \mathrm{sec}$.), and for the sulphoxide of m. p. $204-205^{\circ}$ at $-9 \cdot 1$ and $-26 \cdot 2 \mathrm{c}$. $/ \mathrm{sec}$. (average $-\mathbf{1 7} \cdot \mathbf{c}$ c./sec.). Models show that the sulphinyl-oxygen atom in the syn-isomer lies closer to the methylene bridge than in the anti-isomer. On this basis, a syn-configuration $[(V)]$ can be assigned to the former isomer and an anti-configuration to the latter, in agreement with those derived from acidity constants. ${ }^{1}$

[^3]
Experimental

Syntheses of the bicyclic compounds have been reported elsewhere. ${ }^{\mathbf{s}, 6 b, 7}$
Proton Magnetic Resonance Spectra.-The spectra were recorded with a Varian DP-60 spectrometer, operating at $56.4 \mathrm{Mc} . / \mathrm{sec}$. Calibration was by the side-band technique, with $\mathbf{1 \%}$ t-butyl alcohol as internal standard. Chemical shifts ($\pm 1 \mathrm{c} . / \mathrm{sec}$.) and coupling constants ($\pm 0.3 \mathrm{c} . / \mathrm{sec}$.) are the average of five measurements.

This work was supported by a grant of the Consiglio Nazionale delle Ricerche, Rome. One of us (H. H.) is indebted for leave of absence from the Koninklyke/Shell-Laboratorium, Amsterdam, The Netherlands.
(F. M.) Istituto di Chimica Organica dell'Universita, Modena, Italy.
(H. H., G. M., F. T.) Istituto di Chimica Industriale dele'Universitá, Laboratorio C.N.R., V gruppo di Ricerca, Bologna, Italy.
[Received, July 13th, 1963.]

[^0]: Results
 The spectra of norbornene derivatives are usually easier to analyse than those of norbornane derivatives, because in the proton magnetic resonance spectra of the latter the signals of the 5 - and 6-protons overlap with others at higher field. The chemical shifts are collected in Tables 1 and 2.

 The multiplet of the phenyl group, present for all the derivatives, lies at lowest magnetic field (-335 to $-370 \mathrm{c} . / \mathrm{sec}$.); its fine structure and position vary with the configuration of the substituent (endo or exo) and with the type of group (S, SO, or SO_{2}) bonded to phenyl. For example, for the cis-endo-compounds (I)-(IV), a shift of 22 c ./sec. to lower field is observed on passing from sulphide (I) to sulphoxides (III) and (IV), and one of $31 \mathrm{c} . / \mathrm{sec}$. on passing from the same sulphide (I) to the sulphone (II).

 The spectra of the unsaturated derivatives show two asymmetrical multiplets at $\mathbf{- 2 6 0}$ to $-300 \mathrm{c} . / \mathrm{sec}$., which disappear on hydrogenation, and these are assigned to the ethylenic 5 - and 6 -protons. The multiplets can be considered as an AB group, with additional fine structure arising from spin-spin interactions with $\mathrm{H}-1$ and $\mathrm{H}-4$. The separation between the two ethylenic protons varies with the nature and configuration of the 2 - and 3 -substituents.

 The sharp peak at about $-190 \mathrm{c} . / \mathrm{sec}$. belongs to protium oxide, present as an impurity in the deuterium oxide as well as formed in salt-formation by the carboxyl group.

 For the unsaturated derivatives the resonance line in the region -90 to $-120 \mathrm{c} . / \mathrm{sec}$., belonging to $\mathrm{H}-1$, could not be resolved, because of coupling with other protons (e.g., H-2, H-6, and H-7). However, the coupling constants $J(1,2)$ and $J(1,6)$ could be derived from multiplets of the 2 - and 6 -protons. This assignment is in agreement with the nearly constant chemical shift due to the presence of a carboxyl ion at position 2 in all the compounds. Small variations in position of this line depend whether this group is in the endo- or exo-position, and interaction of the latter with the 3 -substituent. For the saturated compounds the line due to the 1 -proton is shifted upfield by about $35 \mathrm{c} . / \mathrm{sec}$. (Table 2).

 The peaks corresponding to the methylenic 7-protons form a multiplet of AB type and are observed at highest magnetic field. Because of direct and long-range coupling with other protons the multiplet components are not sharp (half-width $\sim 10 \mathrm{c} . / \mathrm{sec}$.). The distance
 ${ }^{1}$ Part VI, Hogeveen and Montanari, J., 1963, 4864.
 ${ }^{2}$ Fraser, Canad. J. Chem., 1962, 40, 78.
 ${ }^{3}$ Wiberg, Lowrey, and Nist, J. Amer. Chem. Soc., 1962, 84, 1594.
 ${ }^{4}$ Anet, Tetrahedron Letters, 1962, 1219.
 ${ }^{5}$ Ghersetti, Hogeveen, Maccagnani, Montanari, and Taddei, $J ., 1963,3718$
 ${ }^{6}$ Montanari et al., Gazzetta, (a) 1959, 89, 1564; (b) 1960, 90, 709; 1962, 92, 1168, 1182 ; Boll. sci. Fac. Chim. ind. Bologna, 1960, 18, 52.
 ${ }^{2}$ Hogeveen, Montanari, and Taddei, J., 1964, in the press.

[^1]: ${ }^{8}$ Karplus, J. Chem. Phys., 1959, 30, 11.
 ${ }^{9}$ Williamson, J. Amer. Chem. Soc., 1963, 85, 516.
 ${ }^{10}$ Cavanaugh and Dailey, J. Chem. Phys., 1961, 34, 1099.

[^2]: ${ }_{11}$ Biscarini, Taddei, and Zauli, Boll. sci. Fac. Chim. ind. Bologna, 1963, 21, 169.
 12 Pople, Schneider, and Bernstein, " High Resolution Nuclear Magnetic Resonance," McGraw-Hill, New York, 1959, pp. 119 et seq.
 ${ }^{13}$ Pritchard and Lauterbur, J. Amer. Chem. Soc., 1961, 83, 2105.
 ${ }^{14}$ Curtin, Gruess, Hendrickson, and Knipmeyer, J. Amer. Chem. Soc., 1961, 83, 4838; 1962, 84, 863.

[^3]: ${ }^{15}$ Waugh and Fessenden, J. Amer. Chem. Soc., 1957, 79, 846; Waugh, ibid., 1958, 80, 6697.
 ${ }^{16}$ Jackman, " Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry," Pergamon Press, Oxford, 1959.

